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a b s t r a c t

Saccade detection in an eye-movement trace provides a starting point for analyses ranging from the inves-
tigation of low-level oculomotor mechanisms to high-level cognitive processes. When the eye tracks the
motion of the object of current interest (smooth pursuit), of the visual background (OKN), or of the resultant
visual motion from a head movement (tVOR, rVOR), the smooth tracking movement is generally intermixed
with rapid-phase saccadic eye movements, which must be excised to analyze the smooth components of
tracking behavior properly. We describe a simple method to detect saccades on a background trace of var-
iable velocity, compare our saccade-detection algorithm with the performance of an expert human obser-
ver, and present an ideal-observer analysis to benchmark its detection performance.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Saccade detection in an eye-movement trace provides a starting
point for analyses ranging from the investigation of low-level ocu-
lomotor mechanisms to high-level cognitive processes. For exam-
ple, metrics provided by the saccadic main sequence [1,2] allow
for quantitative diagnosis of saccadic abnormalities [3]; intra-
saccadic intervals define fixation duration, dwell time, and
scanpath information useful to address perceptual or cognitive
processing [4–7]; the proportion or frequency of saccades during
smooth movement can be used as metrics to assess VOR failure
[8], smooth pursuit pathology [9,10], or to evaluate display motion
quality [11,12]. Filters for saccade detection have been developed
and refined over several decades [13–16], often adjusted according
to the experimental question and the eye-tracker signal quality at
hand. In this paper, we propose a novel method designed to detect
saccades superimposed on smooth tracking recorded using non-
invasive video-based eye trackers (typically with position noise
levels of more than a tenth of a degree). Previous methods using
velocity and/or acceleration thresholds [15,17] work quite well
with invasive eye tracking systems (e.g., eye coils) with eye-
position noise on the order of a hundredth of a degree, but cannot
be used robustly with video-based tracker data.

The smooth eye-movement responses to the motion of the object
of current interest (smooth pursuit), of the visual background (OKN),
or of the observer’s head (tVOR, rVOR) is generally intermixed with
rapid phase saccadic eye movements. To extract the information
about cognitive, perceptual, and oculomotor function associated
with saccades, a robust signal-processing method is needed to

detect saccadic ‘‘pulses’’ superimposed on a background of varying
‘‘smooth’’ velocity [18], especially when the background velocity
distorts the familiar saccadic velocity profile (e.g., catch-back
saccades). Furthermore, correctly de-saccaded traces are an as-
sumed starting point for any number of analyses of smooth move-
ments: analysis of smooth tracking [19–21], perception–action
linkages [22], assessment of visual stability during optokinetic nys-
tagmus [23,24], or VOR compensation for translational [25–27] and
rotational [8,28–30] head movements. To this end, we describe a
simple method to detect saccades on a background trace of variable
velocity, present an ideal-observer analysis to benchmark its detec-
tion performance, and compare our saccade-detection algorithm
with the performance of an expert human observer on simulated
trials with realistic background velocity profiles.

2. Algorithm

Our saccade-detection algorithm has three stages starting from
the original eye-velocity trace (Fig. 1). The first stage uses a median
filter to process the eye-velocity trace in such a way as to cancel
out the velocity components related to smooth tracking. The sec-
ond stage is a linear detector based on an ideal observer approach
[31] that measures saccade likelihood at every sample during the
movement, and uses a threshold parameter to flag potential sac-
cade regions. The third stage is a clustering stage [32] to mitigate
the effects of temporal uncertainty and tracker noise, and to reduce
false alarms from noise transients.

2.1. Stage 1 – non-linear median filtering

Given a velocity trace at a known sampling rate, the first step is
to estimate the smooth component of the oculomotor response
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using a ‘‘median filter’’. The median-filtered trace is computed by
sliding a window of odd size over the velocity trace, replacing each
sample of the original trace with the median velocity inside the
window [33], the size of which is one parameter of our algorithm.
The output of this filter is then subtracted from the original veloc-

ity trace [34] yielding a ‘‘saccadic velocity’’ trace. Given a well-
chosen window size, the median filter behaves similar to a low-
pass filtered version of the original trace [8] except that the
high-frequency saccadic velocity components remain largely in-
tact, an interesting and critical nonlinear advantage of the median.

2.2. Stage 2 – linear template matching

We then take the cross-correlation between the eye-velocity
trace and a saccadic velocity template as in similar approaches
[13], which yields a likelihood metric [31] for saccade occurrence.
The saccade-velocity template [35]

Velocity templateðtÞ ¼ 35 � amp
16 � duration

1� 4t2

duration2

� �3

ð1Þ

is scaled such that the value of the likelihood metric approximately
equals the estimated saccade amplitude.

scale factor ¼
R

velocity template

sampling frequency �
R

velocity template2 ð2Þ

Because the cross-correlation involves integration (i.e., the dot
product of the saccade template and a template-sized window
around each sample in the velocity trace), the units of the likeli-
hood metric are expressed in degrees rather than degrees per sec-
ond. Portions of the eye-movement trace where the likelihood
metric exceeds the threshold are then flagged using the threshold
parameter, specified in degrees.

2.3. Stage 3 – non-linear clustering

Brief flagged regions occurring in rapid succession less than a
minimum refractory period apart are combined into a unified sac-

Fig. 1. Algorithmic steps. The first stage in the algorithm is to calculate the median
filter, which is then subtracted from the original velocity trace to yield a saccadic
velocity trace. The second stage takes the cross-correlation between the saccadic
velocity trace and a saccade velocity template, yielding a likelihood metric. As the
cross-correlation involves integration over time, the units of the likelihood metric
are expressed in degrees rather than degrees per second; regions of the trace that
exceed the threshold. The third stage compares the flagged regions against a
minimum inter-saccadic refractory period and a minimum saccadic duration,
combining nearby flagged regions and turning off regions less than a minimum
duration. Regions that conform to these criteria are then detected as saccadic
movements.

Fig. 2. Effect of median filter on detection of saccades during tracking. A–B plot one horizontal eye-position response to a 80 deg/s moving target spot containing pursuit and
saccades detected (solid red) without (A) and with (B) median subtraction, sampled at 240 Hz with a video-based ISCAN tracker. Velocity traces are generated by applying a
FIR low-pass differentiating filter (�3 DB at 32 Hz) to eye position. These filtered velocity traces are an attempt to isolate the velocities associated with saccadic movements,
which is done much more successfully with the median filter (D) than without (C), illustrating the difference between the ‘‘saccadic velocity trace’’ (D) and the velocity trace
containing both smooth and saccadic components (C). E–F plot our saccade likelihood metric showing how simple thresholding can cleanly detect saccades in the median
filter case. The median filter allows the resolution of the three separate saccades along with minimization of any false positive portions of the trace (caused by tracker and
biological noise). For this example, the width of the median filter was set to 170 ms (41 samples), the threshold (dashed black line) was set to 0.25� and the minimum saccade
duration was 16 ms. On standard desktop hardware (3.2 GHz CPU), the Matlab implementation of this detection algorithm requires 226 ms of computation time for this �2 s
trial (1.3 s fixation period not shown).
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cade, preventing the measurement of partial saccades and avoiding
misses. Flagged regions greater than a minimum saccade duration
are simply retained as saccades for further processing; isolated
brief flagged periods are de-flagged as presumed false alarms. This
additional processing involves two floating parameters: the mini-
mum saccade duration and the minimum refractory period (short-
est time between two saccades). Given the noise level in eye
position and using the saccadic main sequence, a useful criterion
for the minimum saccade duration is the expected saccadic dura-
tion for a movement ‘‘in the noise’’, with amplitude equal to eye
position noise (i.e., a noise level of 0.15� corresponds roughly to
a duration of 10 ms from Eq. (1)) [36]. A useful minimum refractory
period under common circumstances (16 ms, four samples at
240 Hz) would consider ‘‘saccades’’ separated by only one, two,
or three samples (12 ms) as a single unified saccade with the
missed thresholding arising from noise in the eye position trace
during the saccade. Saccade detection in tasks that elicit rapid
back-to-back saccades or movements that turn around in mid-
flight [37] may require reducing the minimum refractory period.

3. Results

The median filtering allows us to estimate the smooth compo-
nent of the tracking response to be removed from the velocity trace
[34], leaving the high-frequency saccadic components largely in-
tact (Fig. 2). To preserve these components, the size of the median

filter must be at least twice the width of the largest saccade to be
detected, and need not be fine-tuned as a function of smooth veloc-
ity (a window size of 100–200 ms provides robust results for veloc-
ities up to 60 deg/s).

3.1. Comparison with human expert detection

The threshold parameter in our algorithm determines the trade-
off between hits and false alarms (Fig. 3), akin to setting the crite-
rion in a decision problem [31]. To explore this tradeoff in
determining the best-choice value of the threshold parameter for
real data, we compare the empirical distribution of saccadic ampli-
tudes hand-identified by an expert human observer analyzing real
human tracking trials (Fig. 2, blue distributions) with the distribu-
tion of saccade amplitudes detected by our algorithm in simulated
trials (solid black). The threshold parameter of our algorithm var-
ied from 0.20� to 0.60�. In the test data set, observers were asked
to track a small laser spot moving at speeds ranging from 10 deg/
s to 25 deg/s. Eye-position signals were recorded using an ISCAN
video-based eye-tracking system (RK-726 PCI), with a noise level
of �0.10� [38]. If the threshold parameter is too low, the detector
starts to return small false alarm saccades (see red portion of the
plot near zero for a threshold of 0.20�); if the threshold parameter
is too high, small saccades will be missed. Assuming that the true
distribution of saccade amplitudes is unimodal, even expert human
observers have a small apparent tendency to identify noise as sacc-

Fig. 3. Performance of detection algorithm versus expert human observer. The distributions of hand-cut saccades (blue distributions) are shown for three observers
(columns) on a smooth-pursuit task [38], in comparison with distribution of amplitudes using our saccade-detection algorithm (red distributions). For each observer, we
simulated the original set of trials (800 trials, 800 ms in duration, rtracker = 0.1�) using the list of observed saccade amplitudes and their temporal occurrences. We then used
our algorithm to flag saccades and estimate their amplitudes. Each column represents data from one observer; each row shows the distribution of flagged amplitudes at a
given threshold. Other detection parameters are similar to those used in the original analysis (median window: 170 ms, minimum duration: 12 ms). Vertical gray lines show
the threshold level used in that simulation. When the threshold was set too low (0.20�), the algorithm returned false alarms by flagging noise as small movements (peaks in
red distribution near zero). When the threshold was set too high (0.60�), the algorithm missed some saccades. For these data, a threshold of �0.30–0.40� best approximates
the shape of the original hand-measured distribution, albeit with an obvious peak for very small false alarm saccades. This peak could be eliminated by re-using the amplitude
parameter to screen all saccades smaller than the threshold, at the cost of missing real saccades of this amplitude.
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adic movements (see small mode near zero for observers cd and tf).
The false alarm performance of our automated algorithm is only
slightly worse than a human expert for thresholds in the 0.30�
range, indicating that that value approximates the threshold em-
ployed by expert human observers. Erring toward a low threshold
(reduces missed saccades, increases false alarms) is generally less
troublesome than a high threshold (some small saccades will be
missed and thus included in any smooth movement analysis), as
the minimum saccade duration effectively reduces false alarms.

3.2. Comparison with previous algorithms

An ideal observer provides a useful benchmark to evaluate the
performance of our saccade detection algorithm under varying
conditions, from the simplest ideal case to more realistic condi-
tions. The task of the ideal observer in the signal-known-exactly
condition is to report whether or not a saccade of known ampli-
tude, direction, duration, and timing occurred, given a velocity
trace. In this case, the ideal observer takes the cross-correlation be-
tween the known saccade velocity template and the corresponding
samples in the velocity trace, and computes a single value which is
then compared to a criterion to report whether or not a saccade oc-
curred [31]. This cross-correlation approach defines the upper limit
for detection performance (d0 in the YES–NO task, plotted as solid
lines in Fig. 4A–B), against which we compared the performance
of our algorithm (Fig. 4A) as well as another common approach,

a fixed velocity threshold (Fig. 4B) [39], for various levels of eye-
tracker noise. Under realistic saccade-detection conditions, un-
known saccade timing introduces temporal uncertainty into the
trial, compromising the detection performance of our algorithm
as well as the fixed-velocity threshold. In this simulation, we ex-
plore the effect varying levels of eye-position noise, which
smoothly degrades detection performance of both algorithms, with
efficiencies (ðd0detectorÞ

2
=ðd0idealÞ

2) of less than 0.05 for a simple veloc-
ity threshold and up to 0.50 for our algorithm.

3.3. Setting the floating parameters

The median filter size should be set using the basic heuristic
that it be at least twice the duration of the largest saccade expected
in the data. In our analyses, we commonly used a median filter size
of 164 ms. Saccade threshold should be set to detect saccades lar-
ger than the noise level in the eye-position trace, approximately
0.2–0.25� for eye-position noise of 0.15�. Minimum saccade dura-
tion should be set to the duration of a saccade ‘‘in the noise’’,
approximately 16 ms; values either too high or too low will com-
promise saccade detection, as described below. The minimum
refractory period should be at least 16 ms unless rapid back-to-
back saccades are expected.

Saccade-detectors must detect saccades above an arbitrary size
and operate over the entire trial, thus identifying any above-
threshold values as saccades and returning a troublesome number

Fig. 4. Performance comparison of algorithm and standard velocity threshold. Solid lines in A–B plot detection performance (d0 for the YES–NO detection task) for the ideal
observer as a function of saccade amplitude in the signal-known-exactly case. Colors represent increasing levels of eye-position noise, ranging from 0.15� (green) to 0.35�
(black). Filled circles plot detection performance for the current algorithm (A) and a standard velocity threshold (B). Panel C plots the efficiency ðd0=d0idealÞ

2 for the current
algorithm (black filled circles) and the velocity threshold (red filled circles) detector as a function of saccade amplitude, averaged across the five noise levels. This simulation
tested the effect of noise level on detection performance for a very brief (28 ms) velocity trace, the threshold for both detectors was allowed to vary with the simulated
saccade amplitude (current algorithm: amplitude/2; velocity threshold: peak_velocity /� .75). The median filter and minimum refractory period for the current algorithm
were turned off in this simulation; minimum saccade duration was set to 16 ms.
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of false alarms. Our minimum saccade duration parameter [40]
preferentially decreases false alarms up to a point, but will dimin-
ish detection performance if set too high (Fig. 5A). We used our
algorithm to detect generic saccades (unknown amplitude, onset
time, and duration) within simulated trials that closely matched
the ideal observer’s task, using very short (28-ms) traces. Using a
fixed detection threshold (0.25�), we plotted the effect of a mini-
mum saccade duration parameter that ranged from no effective
minimum (yellow) to 20 ms (black). As shown in this simulation,
the minimum saccade duration parameter decreases the propor-
tion of both hits and false alarms, which can both help and hinder
detection performance depending on how well the minimum dura-
tion is tuned to saccade size.

The efficiency of our algorithm in detecting generic saccades
(unknown amplitude, direction, duration, and timing) clearly var-
ies as a function of minimum duration. The efficiency of our algo-
rithm starts at �30% with no minimum duration, increases to
�40% for a minimum of 12–16 ms, and then decreases again to
25% at 20 ms. In addition, the fixed 28-ms saccade template clearly
helps detect saccades of amplitude 0.6� or greater, apparent in the
clear discontinuity in performance at that amplitude. Further
refinements to the algorithm could include: use of acceleration sig-
nals to detect saccade onsets and offsets [15], padding the flagged
region on either side to account for the sub-threshold velocity
wings of the saccade, throwing out saccades with amplitudes smal-

ler than the saccade threshold, modification of acausal filters and
implementation in a low-level language that will allow for near
real-time saccade-detection during an experiment, and employing
the main sequence relationships in a more sophisticated way to
ensure that the peak velocity, duration, and amplitude are consis-
tent with actual saccades.

4. Discussion

We describe a simple saccade-detection algorithm derived from
an ideal-observer based approach, with several novel advantages.
Using a well-tuned median filter, we effectively subtract out low-
frequency components of the velocity trace related to smooth
tracking while leaving saccadic components effectively unper-
turbed. Whereas any realistic linear high-pass filter will attenuate
the high-frequency components of the saccade, median subtrac-
tion leaves them largely intact. Next, the cross-correlation between
the velocity trace and a saccade-shaped velocity profile is
generated and thresholded to identify portions of the trace corre-
sponding to likely saccade occurrences. Detecting saccades using
cross-correlation with a �30 ms template attenuates high-
frequency eye-tracker noise and allows the saccade threshold
parameter to be expressed in position rather than velocity units,
with detection performance that smoothly degrades as noise levels

Fig. 5. Using the minimum saccade duration parameter to mitigate false alarms caused by temporal uncertainty. In A, the solid red line plots theoretical detection
performance for the ideal observer (slope = 5.82 given rtracker = 0.15�, [22]) for a signal specified exactly (no uncertainty in amplitude, onset time, or duration). In the
simulation of our linear detector phase, our algorithm performs a YES–NO task deciding whether a short velocity trace (28 ms in duration) contains a saccade of unknown
amplitude, onset time, and duration. The cross-correlation metric uses a fixed saccade template (7 samples, 28 ms in length). Because onset time is not known, cross-
correlation values are taken at each point in the velocity filter trace and all values of the correlation metric that exceed a fixed detection threshold (0.25�) are flagged as
possible saccades, increasing both the hit and false alarm rates. The color series of filled circles illustrate the mitigating effect of minimum saccade duration on detection
performance. Note that as minimum duration increases, efficiency increases until a maximum value of 16 ms (trf) at which point efficiency decreases again. B illustrates this
further by plotting the proportion of hit responses (a ‘‘saccade present’’ response when a saccade is present) as a function of the proportion of false alarms (a ‘‘saccade
present’’ response when no saccade is present). Dashed black lines represent d0 values of 0, 1, 2, and 3 in this YES–NO task. Each filled circle in C plots the efficiency of our
algorithm as a function of saccade amplitude using a given value of minimum saccade duration (color series given in B). Dashed horizontal lines plot the average efficiency
across all amplitudes tested. As the minimum duration increases up to 16 ms (blue) false alarms systematically decrease, but as it increases further to 20 ms (black), hits
begin to decrease lowering efficiency as shown in C. The minimum duration should be set to a value less than half the duration of the smallest saccade of interest (i.e., 12–
16 ms, 3–4 samples at 240 Hz).
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increase. Finally, a minimum saccade duration is imposed to keep
the false-alarm rate at an acceptable level. The four parameters of
our algorithm (median-filter window size, saccade amplitude
threshold, minimum saccade duration, minimum refractory peri-
od) allow straightforward comparison of the signal-to-noise prop-
erties of our algorithm with that of an ideal linear detector. In our
simulations, our algorithm detects generic saccades (uncertainty in
onset time, amplitude, and duration) with performance up to 0.50
of that of an ideal observer facing no temporal or amplitude
uncertainty.
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